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HOPF BIFURCATION FOR FUNCTIONAL EQUATIONS

Introduction. The purpose of this paper is to study the existence

of a smooth Hopf bifurcation for functional equations. The bi-
furcation parameters may include the delays. The results will be
described for a special case of the equations considered.

Suppose ry,r,,ry are given positive numbers, a(6),
=7« 8 < 0 35 a Cl-function, g:]R3 +R is a Cl-function,
g(0) = 0, h: R~+1R 1is a Cl-function, h(0) = 0, and consider the

equation

0
(1) x(®) - glx(ery), x(eorp), [ a(@)nix(e+0))a0) = 0.
-r
3

Suppose the linear variational equation around zero,

0
(2) x(t) - a.x(t-r,) - ax{r-7,) - & a(®)x(t+9)add = o, ﬁ
1 1 2 2 - 3
3
has the property that there is a point af - (ag,ag,ag,rg,rg) €

R; x GR’)Z and a surface S through this point of codimension

one such that the characteristic equation

-Ar -AT 0
(3) 1 - ae 1. a,e e B ag J a(e)ekede =0
-T

2
has two roots A(a),A(a), o = (al,az,a3,r1,rz), for o in a
neighborhood U of S, A(ao)-F iv, v > 0, and the remaining roots

are bounded away from the imaginary axis for & ¢ U. Also,

suppose di(a)/de # 0 along the normal to the tangent plane of S




8 for o € U. Under this hypothesis, it is shown that Equation (1)
has a smooth Hopf bifurcation from 0 at any point on S.

One important remark is that the delays ry,r, can be
chosen as bifurcation parameters. At first, it would seem to be
impossible to prove this result since the function in Equation (1)
considered as a function on the space C([-h,0],R), h > max(rl,rz,r)
is not a differentiabie function in Ty,T,. However, under the
assumption that a(9) is C1 in 0, we prove every periodic

solution of Equation (1) must be Cl. This fact and an argument !

similar in spirit to the one in [4] make it possible to prove the

bifurcation theorem.

Our proof of the theorem uses only the Fourier series of a
periodic function and not the variation of constants formula as is
usually the case for evolutionary equations (see, for example, [3]).

To determine the number of periodic solutions that bifurcate

from zero at o and their stability properties, one must use some

type of averaging process along with the variation of constants

formula. This latter formula is used either to obtain a center

manifold theorem or to show that the characteristic multipliers

of the linear variational equation around a periodic orbit

determine the asymptotic behavior of the solutions. These
topics will be treated in a subsequent paper.

’ The results hold for more general equations

|
o

0
x(t) - I Ax(e-ry) - [ A@)x(£+0)d0 - g(a,x)
=

AR -
e 3
s

where x € R", xt(e) = x(t+0), -h < 6 < 0, and- & is the bifurcation

parameter which may include all the Ty and coefficient matrices

Ak,A(e).




Functional Equations.

Suppose r > 0 1is a given real number, R is the real line,
R"™ is an n-dimensional normed space over R with norm | -1,
C([a,b]JRn) is the Banach space of all continuous functions
¢: [a,b] »R™ with the norm |[¢] = sup{|¢(®)]: a £ B = b},
C=cC(l-r,0] ,R™), L(X,Y) -is the space of all linear continuous
mappings L: X - Y from the Banach space (X,[*]) into the Banach
space (Y,|*|), with the norm |L| = sup{|L¢|: || = 1},
LX,X) = LAX). If x e€C(la,b],R") and a+r <t <b we define
x, €C by xt(e) = X(t+0}), ¥ < @ < 0.

Recall the Riesz Theorem [8] on the representation of elements
of £{TCJRn) via the Stieltjes Integral: any D € ﬁf(CJRn) can

be written in the form
0
Do = A0 - [ daw(®e(®), ¢ <,
-T

where A, € EZ@RH) and wu: [-r,0]~+j{URn) is a function of bounded
variation on [-r,0], continuous at © = 0.

If we decompose M as the sum of its saltus part, plus its
absolutely continuous part, plus its singular part, we can also

write D¢ as

0 0
Dt = Ag#(0) - I ACr - [T A@e@ - [T see®),

where {-rk}k is the countable set of discontinuities of u,

Ak € S/ORn) is the jump of M at Ty for all Kk,

T T e R T RS Wy -y o
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LIAl <=, Lim 3 JA ] =0, A: [-1,0] » ZL®RY) is absolutely
k

€40 0<rk<€

Lebesgue integrable i.e., A € Ll

and S: [-r,0] ~» 5{UR") is continuous,
has bounded variation on [-r,0] and %g = 0 almost everywhere.
In what follows, we always suppose that the singular part S

is identically zero. Define
D% = A,0(0) - I AO(-1);

0
plo =-J A(8)0(0)d0, for all ¢ € C,
el 4

-)‘rk ke
- Y Ae and H()) = D(e" 'I), for
@ g k
all X € €, where I 1is the identity n X n matrix.

and B2 = 0% 1) = &

We say that D0 is hyperbolic if there exist constants
a>0 and b > 0 such that |det HO(A)[ > b for all X such that
|[Re A| < a. If |det HO(A)I >b for all X such that Re A > -a,
we say that D0 is stable. To justify this terminology we note
that if A is invertible in <(R™), the hyperbolic (resp. stable)

0
functionals D0 are characterized by the fact that the origin ]

0ec- {¢ € C: 0% = 0} is a hyperbolic (resp. stable)

“def
equilibrium point of the linear dynamical system defined on C

Lt

0

by To(t)¢ = X for all t > 0 and ¢ € CO, where x: [-T,») + R"

t’
is the continuous solution of the initial value problem

Do(xt) =0, Xg = ¢. See [3] and [5] for details. The definition
of hyperbolicity and stability can be extended to a general

D € £{TCJRn) and the above characterization extends to the case
when the singular part S is identically zero;.the case S £ 0

is still open. This concept of hyperbolic is a special case of

admissibility in [6], and appeared implicitly in [S].
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Using the Riemann-Lebesgue Lemma, it is easy to prove that,
if D0 is hyperbolic, then the function det H(2) can have only a
finite number of zeros in a sufficiently thin neighborhood of the
imaginary axis. Of course, all of them have finite multiplicity.

0

Therefore, if D0 is hyperbolic, then D = D~ + D1 is hyperbolic

if and only if the function det H(A) does not have purely imaginary

roots.
In what follows, we always suppose that DO is hyperbolic.
Consider the functional equation

(1.1) D(x.) - glx) = £(¢)

where g: C S G continuously differentiable, g(0) = 0,
g'(0) =0 and £ R > R™ is continuous.
We study the periodic solutions of Equation (1.1) when f

is periodic. Let £ , w > 0, be the space of all continuous

w?
w-periodic functions f£: R -~ R™ with the norm |[f]| =
sup{|f(t)|: t € R}, 1let gyil) =-kE & 9 %% e £} and for

; 2
each integer n, let c_[f] = o f e 1Mte(tydt.
n 2m 0

Lemma 1.1. If p? is hyperbolic, then for any ® > 0 and for

there exists a unique solution of Doxt = f(t) 1in 9&.

any fe¢ &

w?

P



If we denote this solution by x = Sf, then S 1is a bicontinuous

bijective operator from &£ onto itself. If f |is Ck, so is

8f.
Proof. For simplicity, let us suppose w = 2w, If f € 5?2" and
if the equation Doxt = f(t) has a solution x in 93“’ then
2 (1 -1 - %
cn[X] = [H (in)] cn[f] for n = 0,%1,%£2,...
This shows uniqueness of the solution in 92“ (and existence

and uniqueness of solution in LZ[O,ZN]). To prove existence of
solution in 92" we use a result of Cameron and Pitt (7] which

states that there exist sequences {X;}, {v,}, X, € Lm"), Y € R,

0 _1 'inYk
Y |xk| < o, such that [H (in)] = X, e for all n e R. It
k k
is easy to see now that x(t) =} ka(t+yk) is a continuous
k
2m-periodic solution of Doxt = f(t) and the lemma is apparent.

As an example, consider the scalar equation
x(t) - Alx(t-l) - Azx(t-ﬂ) = cost
under the hypothesis IAll + IAZI < 3.

The functional D0¢ = ¢(0) - A1¢(-1) - A2¢(-") is stable

and
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and the unique 27-periodic solution of the above equation is given by

¢-13* %
p=

x(t) = (-l)pAgAg-pcos(t+p).

-
e~ 8
o

0

Even if D0 is not hyperbolic, we can find, by the above
procedure the w-periodic solutions of Do(xt) s f{e), € & Z,, in the

case where f 1is a trigonometric polynomial. But the general

situation is very complicated. For the example x(t) + % x(t-1) +

% x(t-7) = £(t), with £ e gzn arbitrary, one encounters the

problem of small divisors.

Another application of Lemma 1.1 is the equation

x(t-1) + kgz ;kl+_1 (x(t - ]15) + x(t - 2 + i—)] = f(t).

In this example,
p%(9) = ¢(-1) + R A ;lm [O(- ) + 0(-2 + DI

and it is not difficult to prove that D0 is hyperbolic. Therefore,

for any f e £ .

the above equation has a unique sclution in £

Lemma 1.2. If D° is hyperbolic and f ¢ &£

»» then, there exists

' a § = G(DO) > 0 such that, for any continuous T: R =+ £/U:JR“)
“ such that T(t+w) = T(t) for all t eR and |T| < &, where
lTI =defsup{lT(t)¢[: ¢ €C, |¢'

1, t € R}, the equation

TR T T

R Tt




s s et = S o e

DO(xt) - T(t)x, = £(t)

has a unique solution x(T,f) € 9; and the map (T,f) » x(T,f)

is continuous.

Proof. Let £ be the space of all maps T: R » <(C,R™) which are

continuous and w-periodic, with the above norm |T|. Consider the

mapping

F. ¥ x _@w - %
defined by #(T,x)(t) = D’(x.) - T(t)x, - £(t) for all t €R.
It is easy to see that % is continuously differentiable. By
Lemma 1.1, %(0,x.) = 0 where x,.(t) = Y X, f(t+Yy,). Lemma 1.1
f £ kK k
again implies that gi?(O,xf) is an isomorphism from 9Z onto
itself.

Thus, the Implicit Function Theorem (IFT) implies the

conclusions in Lemma 1.2.

Lemma 1.35. If D0 is hyperbolic and f € 92, then there exists
a ¢ = G(DO) > 0 such that, for any continuously differentiable map
g: C »R" such that lg| < 8, where

lg| = sup{lg(j)(¢)|: ¢ ¢ C, j =0,1}, then the equation
D’(x,) - g(x,) = £(t)
t t »

has a unique solution x € %,. Moreover, if f is Cl, so is x.




9
g Proof. Let Z= {g: C~R" g is Cl, |g] < »} and consider the
mapping
3
N R A
g defined by

Fg,0 () = %(x) - glx) - £(t)

for all t e RR.

By Lemma 1.1, (0,1 X £(-+7;)) = 0 and 37 (0.1 X E(-+7))

3 is an isomorphism from £ onto Z,.
The IFT can be applied to give a solution x = x(g,f) 1in

%, of our equation.

We suppose now that f is C1

and prove that x(g,f)(t) is
continuously differentiable in t e R. Let y € 9& be the unique

solution of
D%(y,) - g'(x (g, £))y, = EC2).

Consider the function

x(t+At) - x(t)

2(t,at) = XLEAL - y(8)

4 defined for teR,At # 0. As a function of t, z(t,At)

Ao

satisfies the equation




10

1 ; ?
Do(zt) - [Lg'(;xt+At + (1-9)x)dE]z, = fo[f(t+;At) - 1(t)1dzg :f

E |
‘ c[otg'(cxt+At £ 10y - g (x,)1d0)y, . i

Since this equation depends continuously upon At, for t ERW.
Lemma 1.2 implies that z(-,At) is a continuous function of At,

for At e R. Therefore, there exists the limit 1im z2{~ At) € 9&.
At>0
But this limit solves the limit equation DO(Zt) - g'(x) z, = 0,

so it is the zero function and x = y.

Corollary 1.4. Suppose D0 is hyperbelic, f is C1 and A: [-r,0] -»
0

ﬁfORn) is an Ll-function such that the function t f A(6)x(t+6)do
: -r
is continuously differentiable whenever x is continuous. Then,
there exists a 6 = 6(D0) » @ such that if g: C >R s Cl, :'

and |g| < 8, then, all continuous periodic solutions of the equation

0 3 .
p%Ce) - [ AO)x(t+0)a0 - g(x,) = £(1)
-1

%
Proof. Suppose x € % is a solution of the above equation.

(N}

*
Then, x is also a solution of

0 0 x
D (xt) - g(xt) = f A(B)x (t+6)de + f(t)
-r

and Lemma 1.3 implies the result.
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Suppose D0

hyperbolic.

homogeneous functional equation D(xt) = 0.

case w = 2m,

exist nonzero solutions in 9%n

det H(in) = 0 admits at least one

ny,...,n be all these integers.

m
for the subspace {VeR™: H(inj)v

that the set of all complex-valued

of Dxt = 0 1is the set of all linear combinations of the functions

in.t (k)
e J L T k :
J

We now study the periodic solutions of the nonhomogeneous

0
A

equation D(xt) = f(t), when f €

0 1

D=D +0D is not hyperbolic.

For this purpose, we define the adjoint equation associated

to the equation D(xt) = (0 as the

11

D (rg) = ¥ (O - I y(Eemny

where y belongs to the dual

said for the equation D(xt) = 0 carries over for Equation (1.5)

with the obvious adaptation.

*
continuous 27-periodic solutions of D (yt) =0

is hyperbolic and suppose that D

Let us seek now the solutions in 9@

By taking Fourier coefficients, we see that there

PSR o ity Lo [ e

(]Rn)* of R".

In particular, the set of all

is not

of the linear

We consider only the

if and only if the equation

integer solution n. Let

v(pj)

Let V(l),..
n. n.

be a basis

Y

0}. Then, it is easy to prove

continuous 2T-periodic solutions

,M.

is hyperbolic but
w

functional equation

0 i
; j y(t-0)A(0)d0 = 0 ;
-T

All that has been

is the set of

in.t (k)
all linear combinations of the functions e J»wn 5K = Ly s yPa

j

J
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j=1,...,m where w « s W J is a basis for the subspace

%y %3

*
{w € GRn) : wH(inj) = 0} and as before, nl,...,nj are the integer

solutions of det H(in) = 0. We will suppose that the vectors wék)

: J
are unit vectors.

Lemma 1.5 (Fredholm Alternative) Suppose D0 is hyperbolic,

D = D0 + D1 is not hyperbolic, A: [-r,0] - ijRn) belongs to L1
and f e .
»

w

Then the equation Dxt = f(t) has a solution in
if and only if f is orthogonal to the continuous @w-periodic

*
solutions of the homogeneous adjoint equation D ¥e © 0 that is,

w
f y(t) f(t)dt = 0 for all continuous w-periodic functions
0

1

* *
y: R ~ GRn)O such that D (yt) = 0. Moreover, if f is C
1

and t » J A(B)x(t+9)d® is C whenever x 1is continuous,
-r
are in .9%1).

then, all solutions of D(Xt) s it} in &

Furthermore, there exist linear continuous operators

J: &

2 > o, and. e (=) 9"”» PF,; such that (I-J)F,

w w

is the set of all f € 9% which satisfies the above orthogonality
condition and, for any f € (I-J) %, , x = XAf 1is a solution

in % of the equation D(x,) = f(t). In other words, H

is a continuous right inverse of the operator x b D(x ).
L]

Proof. For simplicity take w = 27, If the equation has a solution

*
X () in :%", then equating Fourier coefficients

M T 4

e e it #2 8o—I L
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(£].

*
implies H(inj)ql.[x I =c..

j (k)
Multiplying both sides of this equality by wo we get
j -
(k)
v, -cn.[f] =0
J J

or

f2ﬂ -in.t ( k)
| e J W . -E(t) =D
0 j
for all k = l,...,pj; J = 1,...,0. But this implies that £ is

*
orthogonal to 27m-periodic solutions of D Ye = 0.

Conversely, if the above integrals are zero, then we can produce

(n.) n.
vectors Ve ¥ g =l e ms such that H(inj)vf J° - Cy [£] and
J
construct the function
A moan.t (n.) i .
Xty Te 4 ou d s L g e,
j=1 ; n;‘nl,..,nm

This function is a well-defined 2T-periodic Lz-solution
of the equation D(xt) = f(t). From the Schwarz Inequality, x*
is boundéd and therefore x* belongs to L7[0,27]. Let us prove
that x*(t) is in fact a continuous function. Indeed, x*(t) is

also a 27-periodic Lz-solution of the equation
0 4 *
D (xt) = f(t) + f A(6)x (t+6)do.
-T

0
By hypothesis, f 1is continuous; the function . t I I A(O)x(t+6)do
-r

3 2 3 ¥ : : 1 % X
is continuous since it is the convolution of an L -function with an
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*
L® function. Then, Lemma 1.1 implies that x is continuous.
Now, since the matrix H(jin.) admits a right inverse, the
(n. J
i)
f

vectors V can be chosen such that they are linear and continuous

in f,
We define the projection J by

m Py in [T ,om -in.s T
- 1 (k) —(k
e jzl e '.Z_HIO Xy J f(S)di‘l l}njj Gl

w

and the operator ¢: (1-J) ¥ ~ £ by

m s
(X} = Te T d g § Hl(in)c (£1e™, ¢ e R,

1 n#nl,...,nm

< 74
£ e (I J),w.

Schwarz inequality shows that % is continuous and the
rest of the proof of Lemma 1.5 is obvious.

Let us specialize the Fredholm alternativelto the case where
+i are simple roots of h(A) = det H(X) = 0, that is, h(i) = 0
and h'(i) # 0. Let P be an invertible n X n matrix such that

P-1H(i)P is in the complex Jordan canonical form

P lHci)p

s gy R e




14a

where Hyse.. M~ are the eigenvalues of H(i) and 81,...,€n = )

{0,1}. Since 0 is an eigenvalue of H(i) we can suppose that

My = 0. Let M(A) = (M;(M)] = P lH(A)P. Then,

— —

Mil(l) 61 Qe -t 0

Mél(i) Hy €y v 0
h'(i) = det

A 0 0 e U
L_- n, n

Since h'(i) # 0 by hypothesis, we can conclude that the number of

blocks associated with the eigenvalue 0 1is one; that is, the

null spaces N_ = {v e ¢": H(i)v = 0} and Ny = {w e (¢n)*: wH(i) = 0

have dimension one. If the block corresponding to the eigenvalue 0

has dimension j x j, then, it is easy to see that Vo = Peg and

Wy = ejP-l, where ey is the 1 X n matrix with zero components

0
: except the kth which is one, are basis for Nr and Nk’ respectively.

b It is easily seen now that

('
(-1)J+1MJ!1(i)uj+1 crn by I < aum

K'{1) S
(-1)"*1Mn1(i) if j =n

-~

and wol{'(i)v0 = Mjl(i)'

w lw, |
Therefore, if we define w = TWET and v = HTI%TT Vo
, ]

we have

T T ORI RS TR AT D T, AT M




14b

1, wH'{i)v = 1,

(1.3) H(i)v = 0, wH(i) = 0, |w]|

Using (1.3), one can also prove that the conditions h(i) = 0 and
| h'(i) # 0 are equivalent to saying that the equation D(xt) =0
has a one-dimensional space of solutions of the form eitb and no |
solution of the form eit[tb+c], b # 0.
Suppose now that +i are simple roots of h(A) = 0 and no
other characteristic root is an integral multiple of 1i.

For each f € .95n such that wcl[f] = 0, we choose V|[f]

!
|
|
|
|
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varying continuously with f such that H(i)v([f] = c1[f]. Then

the general real 27-periodic continuous solution of D(xt) = f(t)

is given by

x(t) = catty s Te 1ty & i H(in)'lcn[f]e1nt

In|#1

+ eltvf + e'ltvf

c € ¢" arbitrary.

The projection J: é%n > 9%" takes the form

(1.4) (Jf)(t) = (wcl[f])eltWT + (ﬁt_l[f])e_lth
and the operator _w: (I-J) 93n > 9%" is given by
(1.5) KIFI(t) = elfv. + e 1ty 4 Hl(in)c (f1eint,

for all f ¢ (I-J) 2, and all t € RR.

2. The Hopf Bifurcation Theorem.

Suppose & is a real Banach space, the parameter space,

ay € ¥ is fixed, V, is a neighborhood of @y in o D and
0

g are continuous mappings from & X C into ]Rn; D(@)¢ is linear

in ¢,

PEEE TS X A~ B 5 5
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'@ + '@
0
A©@9(0) - § AT @), D' = AE,000)®,
k -

r

D()
D (@9

where

0 < 1(@) <1, Ag(@),AL (@) & LR, TA )] <=, lim [ [A (@)]=C |
k EY0 0<rk<e i

uniformly in o € ¥, A%}t [-x,0] +£{0Rn) is a L1 function such

0 t
that the function t b f A(x,0-t)x{0)do is C1 for any continuous
t-T

x: R +1Rn, g(*,?) has continuous first derivative in ¢, g(e,0) = 0,

%% («,0) = 0, for all o € V, » and consider the functional equation
0

(2.1) D(a)xt - g(a,xt) = 0, .

An example which is a special case of (2.1) is the scalar equation
-L]_ )
(2.2) x(t) - Alx(t-rl) - Azx(t-rz) - A [—L x(t+6)do - g(xt) =0,
2
where the parameter @ is the 7-tuple of real numbers
a = (Al,AZ,A,rl,rz,Ll,Lz). i

Our first hypothesis concerns the behavior of the difference

operator in & and is the following:

© e A AR
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(H1) We asume there exist constants a > 0, b > 0 such that if
A e, |Re Al < a, then
-Ar

|det(A, - ¥ A e k)l >b for all o« eV
0 k -

k Q

0

Hypothesis (H1) says that DO(G) is hyperbolic for all @
in a neighborhood of SR If o contains some of the delays Ty
then, Hypothesis (H1) puts strong restrictions on the corresponding
coefficients Ak. To better understand these restrictions we re-

produce here some results in [1].

Suppose

N
pUele < ey

ol = (al,...,aq) € C]R+)q

¥ = (Ykl""’qu)’ ij nonnegative integers,

and

-Y, O
Sy,

Z(a) = closure{Re A: det(I - } Age

where g YkJ j° It is shown in [1] that Z(a) is a finite
union of closed intervals for any o € GR+)q. Also, if the
components of o are rationally independents, then p € Z(a)

! if and only if there is a 0 € RY such that

Ty "%P 1y, -@
(2.3) H(p,0,8) =det[ 1 . } Ae e l= 0.

T A S A A e e e e A S

2 ik » £
o .~=4-*:-55“4~W1.:ﬂ‘_{'ﬁi “ .




18

Even if the components of & are not rationally independent.

we can still discuss the solutions of (2.3). Let

Ol(a) = max{p < 0: there is a 0 e RY such that H(p,0,a) = 0}
0,(¢) = min{p > 0: there is a @ e RY such that H(p,9,%) = 0}.
Take ol(a) = -0, oz(a) = +o if the set involved is empty.

| From the results in [1], Hypothesis (Hl) is equivalent to

ol(a) ¢ =8 €0 % § < 02(0) for o € Vao.

But then, from [1], D?(#)¢ is hyperbolic for any o e ®*")9,
that is, the property of being locally hyperbolic in the delays is,

in fact,a global property in the delays.

A trivial example is DO(G)¢ = ¢(0) - a¢(-u1) 5 b¢(‘“2)
+ ab¥(-0,-0,) with |a] <1, [b] > 1. In this case, HO(A) =

-Aal -Aaz
(1-ae ) (1-be ) with roots lying on either the line

Re A = ;— Inla] or Re A = 1 1n|b|.
1 2
The scalar two-delays functional

DO(“)¢ = ¢(0) - al¢(-ul) - a0 (-a,)

is hyperbolic for any o € (]R+)2 if and only if |a1| + |a2| <1

(stable) or Iaz| > 1 + Iall or Iall > 1 + lazl (unstable). ”




Our second hypothesis is the following:

The characteristic matrix

-Ar 0
HEN) = 4@ - I a@e K[ aw@,0)eMa0, 2 e,
k -F

is continuously differentiable in @; the characteristic
equation det H(*,A) = 0 has, for o = Ugs @ simple purely
imaginary root XO = iVO, iy > 0, and for any integer

n # *1, nAO is not a root.

By changing the time scale, we can suppose that AO = 1. By
the I.F.T., we can find a § > 0 and a function A(a) € ¢ con-
tinuously differentiable for |a-a0| < 8§ such that Aag) = A,
A(x) is a simple root of det H(e,X) = 0 and if det H(e,A) =0
for |a-a,| <34 [A-Ay] <6, then X = A(a).

Let us take v(a) € ¢n and w(a) € (¢n)* such that

H(@, A (%)) v(#) = 0, w(@)H(a,A(4)) = 0, |w(e)| = 1, and
(2.4) w(®) oy H(®,X(3))v(a)

for |a-a0| < 6.
We observe that the derivative of A(2) with respect to

at « = wu, 1is given by

{Z2.5) X'(ao)-Au =~w[%g (Qo,xo)Au]v

where v = v(ao) and w(ao) = w, for all Au € .




Our third hypothesis concerns the differentiability of the

Equation (2.1) with respect to the parameter o. If we impose

that D and g are continuously differentiable in &, the case
where o contains some of the delays Ty is not imluded, since
in this case the function o -+ D(a) € L{(CJRn) is not even con-

tinuous. Fortunately, all we need is

(H3) For any K > 0, any ¢ € C with ¢ £C, |$| < K, the

functions
o > D(o,9)
o > g(o,o),
are continuously differentiable in V . :

0
The last hypothesis says that the characteristic root A (@)

""crosses'" the imaginary axis through AO’ with nonvertical velocity,

for almost all directions: 3
oA
(H4) : Re £y (uo) # 0.

We can now state an extension of the Hopf Bifurcation )|

Theorem for functional equations:

Theorem. Under Hypotheses [H1]-[H4], there is an € > 0 such that
for a e, |a| < €, there is a Cl—manifold I, C &, of codimension 1,

Fa continuously differentiable in a, %, € g * {0 € & Re A(a) = 0, <4

|a-a0| < €}, such that for every o € T

a’ there is a function w(a,a) 2
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*
and an w(a,%)-periodic function x (a,®)(t), continuous together with

¥ 0! *
their first derivatives in t,a,a, w(O,ao) o s X 0,

= 0, and
M)

o)
x*(a,u) is a solution of Equation (2.1). Furthermore, for
|a-a,[ <e, [w-wol < € every w-periodic solution x of Equzvion (2.1)
with |[x| < € must be of the above type except for a translation in
phase, that is, there exist a € (-g€,€), @ € Pa and b € R such that
x(t) = x*(t+b,a,a) for all t € RR.

Proof. The proof proceeds as the proof of Theorem 2.1 in [4].

; § We first introduce a free parameter B in Equation (2.1)

i by scaling the time and determinc 27-periodic solutions of

the resulting equation.

Let g >=1y t = (1+8)7, u(r) = x((1+B)t) and W B(e) =

u(t + IEB)’ -r < 0 < 0. Then, Equation (2.1) is equivalent to the §
equation |
(z.6) D(Ot)ur,6 - g(u,uI’B) = 0.

If this equation has a 2m-periodic solution, then Equation
(2.1) has a (1+B)2m-periodic solution, and conversely.
Let us consider the above equation as a perturbation of the

linear equation D(uo)uI = 0 and rewrite it in the form

D(ag)u, = N(B,u,u) (1)
where

N(B,8,u) (7] =gqg D(2glu; - D®)uy o + gla,u; o)

4
¢
.
0
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for all 8 > -1, ¢ € A, u € 93“, T eR.
Our program now is to find all the 27T-periodic continuous

solutions, which are near to the null s+ ution, of the equation
(2.7) D(ay)u, = [(I-J)N(B,a,u)](T),

and prove that there exist values of B and o such that
JN(B,2,u) (1) = 0. Here J is the projection operator given by
relation (1.4).

It is clear that, after this is done, we have a 27m-periodic

solution of Equation (2.6).

By Lemma 1.5, Equation (2.7) is equivalent to
(2.8)  u(1) = a(e TPy 1 TPIGy o i g)Nes, e, u) (1)

where a,b are real constants, v is given in (1.3) and the

operator % 1is given in (1.5).

Since Equation (2.6) is autoncmous and equivalent to Equation
(2.8) plus JN(B,%,u) = 0, we can take b = 0 in Equation (2.8); the

other solutions are obtained by translations in the phase.

Consider the mapping %: R x (-1,») x & x 9%n - P
defined by
“3%

F(a,B,0,u) (1) = u(t) - a(eitv+c vy - #(I-J)N(B,a,u)(T).

It is easy to see that 3F , and %%Z exist and are




ppp——— e —— — —r——————————
-— il - e o — . S————————— "

R —————————S e

23
1 continuous functions in all thec arguments.
;i We note that 37(0,0,(10,0) = 0 and %UZ (0,0,00,0) is the identity. |
3 Then, the I.F.T. implies the existence of %
! an € > 0 and a function u*(a,B,Q) e £ , for each (a,B,®)
such that |a| <¢ [B] < €, |a-a, ]| <€, |u*(a,8,u)| < g,
u(0,8,0) = 0, and F(a,B,%,u" (a,B,9)) = 0.
As a consequence of the I.F.T., u*(T,a,B,a) is continuously
differentiable in a for J|a| < €. We want to show that it is
also continuously differentiable in T, and « in the region
ToeW Bl < e Ia-aol < €. The continuous differentiability with
respect to T follows from the fact that u*(a,B,u)(T), being a
periodic solution of the functional equation (2.7), is continuously ;

; differentiable with respect to T, by Corollary 1.4. Now,gT u*

’ continuous and the fact that N(B,*,u) is continuously differ- L
entiable in B whenever u is continuously differentiable in T,
implies u*(a,B,G) is continuously differentiable in B . By the
same reason and Hypothesis (H4), u*(a,B,a) is continuously differ-
entiable with respect to o.

Let us consider now the bifurcation equations
J(N(B,u,u*(a,B,G))) = 0 or, equivalently the equation,
%ﬁ Iz"e'itw N(B,%,u (a,8,3))(1)dT = 0
' for |a| < ¢, |8 <€, |u-ay| < €. Since JIN(B,u,u (0,8,4))] = 0

for all o and B, we divide this last integral by a and define

.
waln.

2m . .
-1T *
f e 1% N(B,o,u" (a,B,0)) (1)dT
0

G(a,B,a) =

0| =
NIH
=3

. -
- S—

Ty T e T e e R T T S R ) B AL e —
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and solve G(a,B,») = 0.

Now, we compute G(0,B,*). In order to simplify the notation,

%
let us put ul(T,B,G) = et %Z u (T,a,B,G)|a=0. Then, we have, since

Bl o

] g'(*,0) = 0 for all o:

O L 1 1
6(0,8,) = 37 [ e M TwID(ep)ur(B,@) - DE)uy g(B,0)1dr,

0 . A
: = wil - [ du(uo,e)elel L f e'lsul(s,B,“)ds 5
: 27
3 -T 0
: : )
0 i 2L
- Wl - [ du(,8)e 1*81%[ e 1541(s,8,0)ds)
-T 0
= wiH(%),1) - H(®, fg)lv = -wH(e, $g)v

Therefore, taking derivatives and using the equations

Ly (ao,i)v = 1 and A'(aO)Aa= —w[%g (ao,i)AG]v we get

3G A7
(2.9) 36 (0,0,“0) i
and
3G oH :
(2.10) 5 (O,O,GO)-AG = oW e (a0,1)Aa'v = A'(ao)-Aa

From (2.9) and the I.F.T., we can solve the eqguation

Im G(a,B,*) =0

!
i

F TR PR TR F A s T R P A TR 7 P 0 SO VT
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0, 4 = ay. !

for B = B*(a,a) about a

Censider now the last equation

*
r(a,a) =def Re G(a,B (a,%),a) = 0.

Relation (2.10) and Hypothesis (H4) implies that for each a € R, ;

a small, there exists a Cl-manifold it C o/, with codimension 1,
a

such that for any o € Fa, r(a,a) = 0. Moreover,

=
[}

{a e o Ia-aol < €, Re wH(a, ———;i————)v = 0}
1+8 (0,0)

{0 e o7 |a-o < &, Re Af(a) = 0}

0l

and the tangent space of T at o is given by T T, = i
0 0 Xy 0

Ker Re A'(uo).

Given an a €R, |a| < €, and an o € r,» we determine

B*(a,a) and find a nonconstant 27T-periodic solution u*(T,a,B*(a,G),G)
lchiio i s
; 148" (a,®)
a [1+B (a,x)]-2T-periodic solution of Equation (2.1).

* * *
of Equation (2.6) and so, x (t,a,®) = u ( »a,B (a,®),*) is

This completes the proof of the theorem.

Remark. It is clear from the proof of the above results that if

we assume that the functions D(«,$) and g(o,9) have k derivatives
with respect to ¢ which are continuous in the pair («,¢) and
Hypothesis (H3) is satisfied for the kth derivative with respect to : |
@ when ¢ has k continuous derivatives in 6 € [-r,0], then,

the bifurcation function T(a,s) and the functions x(a,2) and




e

26

w(a,e) in the theorem have continuous derivatives up through order k.

3. Example.

Consider the scalar equation

-L
1
(3.1) x(t) = f F(x(t+0))do

0 M

where F(x) = bx(1-x) if =% ¢ (0,11, F(x) = 0 if x £°10,1],
and b > 0, L1 >0 and L2 > 0 are constants, bL2
Equatbn (3.1) was proposed in [2] as a model for some

> 1.

epidemics and growth processes.
The dynamical system defined by Equation (3.1) has the
-1
equilibrium 1 - (bL,) . The variational equation around this

equilibrium is given by

_Ll

(3.2) y(t) = (%; - b) f y(t+8)d6 .

L1

Let o = (b,Ll,LZ). The characteristic equation is
-L
1 e
e

Ly-L,

2
(3.3) - H(@,A) =1 - (f; - b) I de.
Since bL2 > 1, H(¢,0) # 0 and zero is not a characteristic value.
For A # 0, finding the zeros of H(%,A\) 1is equivalent to finding

the zeros of the function

=L, A - (L *+L,)A
(3.4) AH(%,A) = A - (%; Bt T »e T Ay
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For this example, D0¢ = ¢(0) which is hyperbolic; in fact it is
asymptotically stable since Doyt = 0 implies Y is the zero
function for t > Ly + L, regardless of the initial function. fhe
operator D1 is given by

i « (2. . 6)de
Be s B [ 7 e

which satisfies all of the smoothness conditions required in the Hopf

bifurcation theorem. Also, the function F(X) 1is smooth near the
equilibrium point 1 - (bL,) '.
It remains to verify the hypotheses (H2), (H4) concerning the ;

nontrivial zeros of the function AH(a,X). If B = %— - b, this is
2

|
equivalent to discussing the zeros of |4

(Ly*+L,)A LA 55

(3.5) Ae = B(e = 1}

The most interesting values of B,Ll,L2 are those for which all

nontrivial solutions have real parts less than or equal to zero and there

are roots with real part equal to zero. This will define a surface T
of codimension one in ]RS. On one side of this surface, the equilibrium

: will be asymptotically stable and, on the other 4

point 1 - (bLZ)-
it will be unstable. If a point of this surface corresponds to the
case where there are only two purely imaginary roots, then we have a

Hopf bifurcation.

The analysis of the characteristic equation and the determination 4

of the surface T are difficult. However, we can say something about

the equation.




1 A IR

Suppose first that L1 = 0, that is,

L.A Lk
(3.6) he  wfife © 5 1)

The region of stability and instability for this equation are well

understood (see [3]). 1In fact, for the more general equation

(3.73 te ki Byet - B

.

2R Pt 4

unstable (II)
m

) 7

asymptotically stable (I)
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In region (I), all characteristic roots have negative real parts.
The curve 61 + 62 = 0 bounding this region corresponds to a simple
zero root and the other curve bounding this region, to two purely

imaginary roots. At the intersection of these curves one has a

double zero root.

The roots of (3.6) of interest to us are the nonzero ones since
they must be roots of (3.3) and we have assumed 1 - bL2 # 0. From
our discussion of (3.7), it follows that Equation (3.€) has all roots

1

with negative real parts for 1 - (bLZ)_ > 0, which is satisfied by

our hypothesis that bL2 > 1. Consequently, the equilibrium point
1 - (bLZ)_l is asymptotically stable for all b,L2 and no bifurcation

can occur.

Now suppose L1 > 0 and for simplicity that B < 0. mEquatidn

(3.5) has only one real root, namely, the root X = 0. This means
Equation (3.3) has no real roots. Let us prove that, if L1 and L2
vary in a compact interval, then as B8+ 0 , B < 0, all the nonreal

roots have real part approaching -, It is easy to see that

-LIA -(L1+L2)A
A =0 is a simple root of the function X - B[e -e ],

for all B,L Therefore, by the I.F.T. we can find an € > 0

g ol
such that for |B| < %r there is a unique root in the ball
x| < €, namely X = 0, By equating the real and imaginary
parts, we see that any root A satisfies Re XA < 2|B| and if
1-8(Ly+L,)
Re » > § 1n|B|, & > 0, then |Im A| < 2|B| . Choose any
§ > 0 such that ¢ < [2(L1+L2)]'1. Then, each root in the rectangle
{x e ¢: 6§ In|B| < Re A < 2|B|, |Im A| < 2|8|1/2} satisfies
[A] < 2|B|1/2. Therefore for |B| small all roots, except A = 0,

have real parts less than & 1n|g|. If X = jw is a solution of

Equation (3.5), then
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cos L;w cos(L1+L2)w

(3.8)
-w

sin L;w - sin(L1+LiTw

which implies that

2kTL
3.9 i e ke o B - _2km
(3.9) R sin L, gl W =

for some integer k > 1.

Equation (3.9) define surfaces in (B,Ll,Lz)-space. These are

certainly surfaces which always have B < 0. Take the surface
0

has the following property: For any fixed (BO,Ll,Lg) in S, Equation

(3.5) at (B,L?,Lg) has all nonzero eigenvalues with negative real

parts for g0

two purely imaginary roots of Equation 3.5. Thus, the

condition (H2) is satisfied. Also, in the direction normal to this

surface the eigenvalues corresponding to these two purely imaginary

eigenvalues are crossing with a definite velocity. Therefore,

Hypothesis (H4) is satisfied and there is a Hopf bifurcation at each

point on the surface.

< B < 0. At the point (BO,LO,Lg), there are exactly

s R
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